Hierarchical Parallel Algorithm for Modularity-Based Community Detection Using GPUs

نویسندگان

  • Chun Yew Cheong
  • Huynh Phung Huynh
  • David Lo
  • Rick Siow Mong Goh
چکیده

This paper describes the design of a hierarchical parallel algorithm for accelerating community detection which involves partitioning a network into communities of densely connected nodes. The algorithm is based on the Louvain method developed at the Université Catholique de Louvain, which uses modularity to measure community quality and has been successfully applied on many different types of networks. The proposed hierarchical parallel algorithm targets three levels of parallelism in the Louvain method and it has been implemented on single-GPU and multi-GPU architectures. Benchmarking results on several large web-based networks and popular social networks show that on top of offering speedups of up to 5x, the single-GPU version is able to find better quality communities. On average, the multi-GPU version provides an additional 2x speedup over the single-GPU version but with a 3% degradation in community quality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks

Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...

متن کامل

MCMC Louvain for Online Community Detection

We introduce a novel algorithm of community detection that maintains dynamically a community structure of a large network that evolves with time. The algorithm maximizes the modularity index thanks to the construction of a randomized hierarchical clustering based on a Monte Carlo Markov Chain (MCMC) method. Interestingly, it could be seen as a dynamization of Louvain algorithm (see [1]) where t...

متن کامل

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

Hierarchical Problems for Community Detection in Complex Networks

An objective method for extracting network community structure is an extremely useful tool for understanding the large complex networks found in the social and biological sciences. One such method, which relies on the maximization of the modularity quality function Q, has received a great deal of attention and is now widely used. We find that, for networks with a hierarchical modular structure,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013